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Algebraicity and transcendence of power series:
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Overview

1 Monday: Context and Examples
2 Tuesday: Properties and Criteria (1)
3 Wednesday: Properties and Criteria (2)
4 Thursday: Algorithmic Proofs of Algebraicity
5 Friday: Transcendence in Lattice Path Combinatorics
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Part V: Transcendence in Lattice Path Combinatorics
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Lattice walks with small steps in the quarter plane

. We focus on nearest-neighbor walks in the quarter plane, i.e. walks in N2

starting at (0, 0) and using steps in a fixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

. Example with n = 45, i = 14, j = 2 for:

S =

. Counting sequence: fn;i,j = number of walks of length n ending at (i, j).

. Specializations:

fn;0,0 = number of walks of length n returning to origin (“excursions”);

fn = ∑i,j≥0 fn;i,j = number of walks with prescribed length n.
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Generating series and combinatorial problems

. Complete generating series:

F(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jxiyj
)

tn ∈ Q[x, y][[t]].

. Specializations:
Walks returning to the origin (“excursions”): F(t; 0, 0);
Walks with prescribed length: F(t; 1, 1) = ∑

n≥0
fntn;

Walks ending on the horizontal axis: F(t; 1, 0);
Walks ending on the diagonal: “F(t; 0, ∞)“ :=

[
x0] F(t; x, 1/x).

Combinatorial questions:
Given S, what can be said about F(t; x, y), resp. fn;i,j, and their variants?

Structure of F: algebraic? transcendental?

Explicit form: of F? of f ?

Asymptotics of f ?

Our goal: Use computer algebra to give computational answers.
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Small-step models of interest

From the 28 step sets S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are:

trivial, simple, intrinsic to the
half plane,

symmetrical.

One is left with 79 interesting distinct models.

Is any further classification possible?
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The 79 models
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The 79 models
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“Special” models

Dyck: �
@
@R
��

Motzkin: �
@
@R
-��

Pólya: �
�@
?
6
@
-�

Kreweras: �
�@
?@
��

Gessel: �	
�@
@
-��

Gouyou-Beauchamps: �
�@I
@R
-�

King: �	
�@I
?
6
@R
-��

Alin Bostan Algebraicity and transcendence of power series



8 / 32

Algebraic reformulation: solving a functional equation

Generating function: G(t; x, y) =
∞

∑
n=0

n

∑
i=0

n

∑
j=0

g(n; i, j)tnxiyj ∈ Q[x, y][[t]]

“Kernel equation”:

G (t; x, y) =1 + t
(

xy + x +
1

xy
+

1
x

)
G(t; x, y)

− t
(

1
x
+

1
x

1
y

)
G(t; 0, y)− t

1
xy

(G(t; x, 0)− G(t; 0, 0))

Task: Solve this functional equation!
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x
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1
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1
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1
xy
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Task: For the other models: solve 78 similar equations!
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Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!]

K(t; 0, 0) = 3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
t3n.

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel’s conj. 1]

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

Question: What about the structure of K(t; x, y) and G(t; x, y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel’s conj. 2] G(t; x, y) is algebraic.
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. Computer-driven discovery and proof.

. Guess’n’Prove method, using Hermite-Padé approximants† −→ Yesterday

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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. Guess’n’Prove method, using Hermite-Padé approximants† −→ Yesterday

. New (human) proofs [B., Kurkova & Raschel 2013], [Bousquet-Mélou 2015]

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has > 1011 terms; ≈ 30 Gb (!)
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Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010]
Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V − 1)(1 + 3/V)3 = (16t)2,

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be a root of

x(V − 1)(V + 1)U3 − 2V(3x + 5xV − 8Vt)U2

−xV(V2 − 24V − 9)U + 2V2(xV − 9x− 8Vt) = 0,

let W = t2 + (y + 8)t4 + 2(y2 + 8y + 41)t6 + · · · be a root of

y(1−V)W3 + y(V + 3)W2 − (V + 3)W + V − 1 = 0.

Then G(t; x, y) is equal to

64(U(V+1)−2V)V3/2

x(U2−V(U2−8U+9−V))2 −
y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.

. Computer-driven discovery and proof; no human proof yet.

. Proof uses guessed minimal polynomials for G(t; x, 0) and G(t; 0, y).
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. Computer-driven discovery and proof;////no/////////human////////proof/////yet

. Recent (human) proofs [B., Kurkova, Raschel ’13], [Bousquet-Mélou ’15]
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S Pol size ODE size OEIS S Pol size ODE size

1 A005566 — 3, 4 13 A151275 — 5, 24
2 A018224 — 3, 5 14 A151314 — 5, 24
3 A151312 — 3, 8 15 A151255 — 4, 16
4 A151331 — 3, 6 16 A151287 — 5, 19
5 A151266 — 5, 16 17 A001006 2, 2 2, 3
6 A151307 — 5, 20 18 A129400 2, 2 2, 3
7 A151291 — 5, 15 19 A005558 — 3, 5
8 A151326 — 5, 18
9 A151302 — 5, 24 20 A151265 6, 8 4, 9

10 A151329 — 5, 24 21 A151278 6, 8 4, 12
11 A151261 — 4, 15 22 A151323 4, 4 2, 3
12 A151297 — 5, 18 23 A060900 8, 9 3, 5

Equation sizes = {order, degree}@(algeq, diffeq)

. Computerized discovery by enumeration + Hermite–Padé

. 1–22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]

. 23: Confirmed by a human proof in [B., Kurkova & Raschel 2015]
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S alg asympt OEIS S alg asympt

1 A005566 N 4
π

4n

n 13 A151275 N 12
√

30
π

(2
√

6)n

n2

2 A018224 N 2
π

4n

n 14 A151314 N
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N
√

6
π

6n

n 15 A151255 N 24
√

2
π

(2
√

2)n

n2

4 A151331 N 8
3π

8n

n 16 A151287 N 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 1
2

√
3
π

3n

n1/2 17 A001006 Y 3
2

√
3
π

3n

n3/2

6 A151307 N 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3
2

√
3
π

6n

n3/2

7 A151291 N 4
3
√

π
4n

n1/2 19 A005558 N 8
π

4n

n2

8 A151326 N 2√
3π

6n

n1/2

9 A151302 N 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.

. Confirmed by human proofs in [Melczer & Wilson, 2015]
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The group of a model: the simple walk case

The characteristic polynomial χS := x +
1
x
+ y +

1
y

is left invariant under

ψ(x, y) =
(

x,
1
y

)
, φ(x, y) =

(
1
x

, y
)

,

and thus under any element of the group

〈
ψ, φ

〉
=

{
(x, y),

(
x,

1
y

)
,
(

1
x

,
1
y

)
,
(

1
x

, y
)}

.
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,
1
y

)
,
(

1
x

, y
)}

.
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The group of a model: the general case

The polynomial χS := ∑
(i,j)∈S

xiyj =
1

∑
i=−1

Bi(y)xi =
1

∑
j=−1

Aj(x)yj

is left

invariant under

ψ(x, y) =
(

x,
A−1(x)
A+1(x)

1
y

)
, φ(x, y) =

(
B−1(y)
B+1(y)

1
x

, y
)

,

and thus under any element of the group

GS :=
〈
ψ, φ

〉
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Examples of groups

Order 4,

order 6, order 8, order ∞.
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An important concept: the orbit sum (OS)

The orbit sum of a model S is the following polynomial in Q[x, x−1, y, y−1]:

OrbitSum(S) := ∑
θ∈GS

(−1)θθ(xy)

. E.g., for the simple walk:

OS

�
�@
?
6
@
-�

= x · y− 1
x
· y +

1
x
· 1

y
− x · 1

y

. For 4 models, the orbit sum is zero:

E.g. for the Kreweras model:

OS

�
�@
?@
��

= x · y− 1
xy
· y +

1
xy
· x− y · x + y · 1

xy
− x · 1

xy
= 0
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The 79 models: finite and infinite groups

79 models

23 admit a finite group
[Mishna’07]

56 have an infinite group
[Bousquet-Mélou & Mishna’10]

all F(t; x, y) D-finite

19 transcendental
(OS 6= 0)

[Gessel & Zeilberger’92]

[Bousquet-Mélou’02]

4 algebraic (OS = 0)
(3 Kreweras-type + Gessel)

[BMM’10] + [B. & Kauers’10]

−→ all non-D-finite
• [Mishna & Rechnitzer’07] and

[Melczer & Mishna’13] for 5 singular models

• [Kurkova & Raschel’13] and

[B., Raschel & Salvy’13] for all others
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The 23 models with a finite group

(i) 16 with a vertical symmetry, and group isomorphic to D2
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@R
��
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�@I6
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-��
�	
�@I
?@R
-��

�	
�@I
?
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(ii) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic
to D3

�
�@6
@R
�
�
�@
?@
��
�	
@6
@
-�

�
�@I
?
6
@R
-�
�	
�@
?
6
@
-��

(iii) 2 with group isomorphic to D4

�
�@I
@R
-�
�	
�@
@
-��

(i): vertical symmetry; (ii)+(iii): zero drift ∑
s∈S

s

In red, models with OS = 0 and algebraic GF
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Main results (IV): explicit expressions for the 19 D-finite
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let S be one of the 19 models with finite group GS, and non-zero orbit sum.
Then

FS is expressible using iterated integrals of 2F1 expressions.
Among the 19× 4 specializations of FS(t; x, y) at (x, y) ∈ {0, 1}2, only 4

are algebraic: for S = at (1, 1), and S = at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A025595)

F

�	
�@I
?
6
@R
-��

(t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

. Computer-driven discovery and proof; no human proof yet.

. Proof uses creative telescoping, ODE factorization, ODE solving.
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Hypergeometric Series Occurring in Explicit Expressions for F(t; 1, 1)

hyp1 hyp2 w hyp1 hyp2 w

1 2F1

(
1
2

1
2

1

∣∣∣∣w
)

2F1

(
1
2

3
2

2

∣∣∣∣w
)

16t2 10 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
9
4

11
4

3

∣∣∣∣w
)

64(t2+t+1)t2

(12t2+1)2

2 2F1

(
1
2

1
2

1

∣∣∣∣w
)

16t2 11 2F1

(
1
2

3
2

2

∣∣∣∣w
)

2F1

(
1
2

5
2

3

∣∣∣∣w
)

16t2

4t2+1

3 2F1

(
3
2

3
2

2

∣∣∣∣w
)

16t
(2t+1)(6t+1) 12 2F1

(
5
4

7
4

1

∣∣∣∣w
)

2F1

(
5
4

7
4

2

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

4 2F1

(
3
2

3
2

2

∣∣∣∣w
)

16t(1+t)
(1+4t)2 13 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

3

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2

5 2F1

(
3
4

5
4

1

∣∣∣∣w
)

2F1

(
5
4

7
4

2

∣∣∣∣w
)

64t4 14 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
9
4

11
4

3

∣∣∣∣w
)

64(t2+t+1)t2

(12t2+1)2

6 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

3

∣∣∣∣w
)

64t3(1+t)
(1−4t2)2 15 2F1

(
1
4

3
4

1

∣∣∣∣w
)

2F1

(
3
4

5
4

2

∣∣∣∣w
)

64t4

7 2F1

(
1
2

1
2

1

∣∣∣∣w
)

2F1

(
1
2

3
2

1

∣∣∣∣w
)

16t2

4t2+1 16 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
9
4

11
4

3

∣∣∣∣w
)

64t3(1+t)
(1−4t2)2

8 2F1

(
5
4

7
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

2

∣∣∣∣w
)

64t3(2t+1)
(8t2−1)2

9 2F1

(
7
4

9
4

2

∣∣∣∣w
)

2F1

(
7
4

9
4

3

∣∣∣∣w
)

64t2(t2+1)
(16t2+1)2 19 2F1

(
− 1

2
1
2

1

∣∣∣∣w
)

2F1

(
1
2

1
2

2

∣∣∣∣w
)

16t2

. All related to complete elliptic integrals!
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Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Rachel & Salvy 2013]

Let S be one of the 51 non-singular models with infinite group GS.
Then FS(t; 0, 0), and in particular FS(t; x, y), are non-D-finite.

. Algorithmic proof. Uses Gröbner basis computations, polynomial
factorization, cyclotomy testing.
. Based on two ingredients: asymptotics + irrationality.

. [Kurkova & Raschel 2013] Human proof that FS(t; x, y) is non-D-finite.

. No human proof yet for FS(t; 0, 0) non-D-finite.
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The 56 models with infinite group
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In blue, non-singular models, solved by [B., Raschel & Salvy 2013]
In red, singular models, solved by [Melczer & Mishna 2013]

Alin Bostan Algebraicity and transcendence of power series



23 / 32

Example: the scarecrows

[B., Raschel & Salvy 2013]: FS(t; 0, 0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [tn] FS(t; 0, 0)

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .

is ∼ K · 5n · n−α, with α = 1 + π/ arccos(1/4) = 3.383396 . . .

The irrationality of α prevents FS(t; 0, 0) from being D-finite.
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Summary: Classification of 2D non-singular walks

The Main Theorem Let S be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series FS(t; x, y) is D-finite

(2) the excursions generating series FS(t; 0, 0) is D-finite

(3) the excursions sequence [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the model S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0, and iff it has OS = 0.

In this case, FS(t; x, y) is expressible using nested radicals.
If not, FS(t; x, y) is expressible using iterated integrals of 2F1 expressions.
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Summary: Walks with unit steps in N2

quadrant models: 79

|G|<∞: 23

nonzero orbit sum: 19

Kernel method + CT

D-finite

zero orbit sum: 4

Guess’n’Prove

algebraic

|G| = ∞: 56

asymptotics + GB

not D-finite
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Extensions: Walks with unit steps in N3

233−1 ≈ 67 millions models, of which ≈ 11 million inherently 3D

3D octant models with ≤ 6 steps: 20804

|G| < ∞: 170

orbit sum 6= 0: 108

kernel method

D-finite

orbit sum = 0: 62

2D-reducible: 43

D-finite

not 2D-reducible: 19

not D-finite?

|G| = ∞?: 20634

not D-finite?

[B., Bousquet-Mélou, Kauers, Melczer 2015]

. Open question: are there non-D-finite models with a finite group?

. [Du, Hu, Wang, 2015]: proofs that groups are infinite in the 20634 cases

. [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models
found with |G| < ∞ and orbit sum 0 (instead of 19)
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The 19 mysterious 3D-models
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Open question: 3D Kreweras

Two different computations suggest:

kn ≈ C · 256n/n3.3257570041744...,

so excursions are very probably transcendental
(and even non-D-finite)
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Extensions: Walks in N2 with longer steps

• Define (and use) a group G for models with larger steps?

• Example: When S = {(0, 1), (1,−1), (−2,−1)}, there is an underlying
group that is finite and

xyF(t; x, y) = [x>0y>0]
(x− 2x−2)(y− (x− x−2)y−1)

1− t(xy−1 + y + x−2y−1)

[B., Bousquet-Mélou & Melczer, in preparation]

. Current status:

• 680 models with one large step, 643 proved non D-finite, 32 of 37 have
differential equations guessed.

• 5910 models with two large steps, 5754 proved non D-finite, 69 of 156
have differential equations guessed.
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Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of F(t; x, y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:
• Guess’n’Prove
• Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30Gb.

Lack of “purely human” proofs for some results.

Still missing a unified proof of: finite group↔ D-finite.

Open: is F(t; 1, 1) non-D-finite for all 56 models with infinite group?

Many open questions in dimension > 2.
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End of Part V

Thanks for your attention!
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