Algebraicity and transcendence of power series: combinatorial and computational aspects

Alin Bostan

Algorithmic and Enumerative Combinatorics RISC, Hagenberg, August 1–5, 2016

Alin Bostan

Algebraicity and transcendence of power series

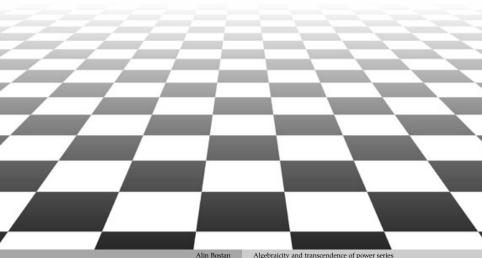
Overview

- Monday:
- ② Tuesday:
- ③ Wednesday:
- ④ Thursday:
- **5** Friday:

Context and Examples Properties and Criteria (1) Properties and Criteria (2) Algorithmic Proofs of Algebraicity Transcendence in Lattice Path Combinatorics

Alin Bostan Algebraicity and transcendence of power series

Part V: Transcendence in Lattice Path Combinatorics



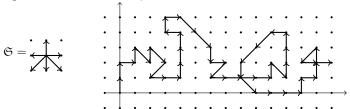
Algebraicity and transcendence of power series

Lattice walks with small steps in the quarter plane

▷ We focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^2 starting at (0,0) and using steps in a *fixed* subset \mathfrak{S} of

 $\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}.$

▷ Example with n = 45, i = 14, j = 2 for:

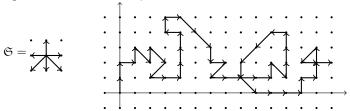


Lattice walks with small steps in the quarter plane

▷ We focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^2 starting at (0,0) and using steps in a *fixed* subset \mathfrak{S} of

 $\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}.$

▷ Example with n = 45, i = 14, j = 2 for:



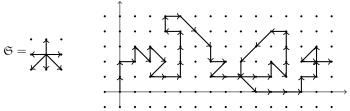
▷ Counting sequence: $f_{n;i,j}$ = number of walks of length *n* ending at (i, j).

Lattice walks with small steps in the quarter plane

▷ We focus on nearest-neighbor walks in the quarter plane, i.e. walks in \mathbb{N}^2 starting at (0,0) and using steps in a *fixed* subset \mathfrak{S} of

$$\{\swarrow,\leftarrow,\nwarrow,\uparrow,\nearrow,\rightarrow,\searrow,\downarrow\}.$$

▷ Example with n = 45, i = 14, j = 2 for:



▷ Counting sequence: $f_{n;i,j}$ = number of walks of length *n* ending at (i, j).

Specializations:

f_n;0,0 = number of walks of length *n* returning to origin ("excursions"); *f_n* = ∑_{*i*,*j*≥0} *f_n*;*i*,*j* = number of walks with prescribed length *n*.

▷ Complete generating series:

$$F(t;x,y) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

Complete generating series:

$$F(t;x,y) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

- Specializations:
 - Walks returning to the origin ("excursions"):
 - Walks with prescribed length:
 - Walks ending on the horizontal axis:
 - Walks ending on the diagonal:

F(t; 0, 0); $F(t; 1, 1) = \sum_{n \ge 0}^{n} f_n t^n;$ F(t; 1, 0); F(t; 1, 0); $F(t; 0, \infty)'' := [x^0] F(t; x, 1/x).$

Complete generating series:

$$F(t;x,y) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

Specializations:

• Walks returning to the origin ("excursions"):

- Walks with prescribed length:
- Walks ending on the horizontal axis:
- Walks ending on the diagonal:

Combinatorial questions:

Given \mathfrak{S} , what can be said about F(t; x, y), resp. $f_{n;i,j}$, and their variants?

- Structure of *F*: algebraic? transcendental?
- Explicit form: of *F*? of *f*?
- Asymptotics of *f*?

F(t;0,0):

F(t;1,0);

 $F(t;1,1) = \sum_{n>0}^{\infty} f_n t^n;$

 $F(t;0,\infty)'' := [x^0] F(t;x,1/x).$

Complete generating series:

$$F(t;x,y) = \sum_{n=0}^{\infty} \left(\sum_{i,j=0}^{\infty} f_{n;i,j} x^i y^j \right) t^n \in \mathbb{Q}[x,y][[t]].$$

Specializations:

• Walks returning to the origin ("excursions"):

- Walks with prescribed length:
- Walks ending on the horizontal axis:
- Walks ending on the diagonal:

Combinatorial questions:

Given \mathfrak{S} , what can be said about F(t; x, y), resp. $f_{n;i,i}$, and their variants?

- Structure of *F*: algebraic? transcendental?
- Explicit form: of *F*? of *f*?
- Asymptotics of *f*?

Our goal: Use computer algebra to give computational answers.

F(t;0,0);

F(t;1,0);

 $F(t;1,1) = \sum_{n>0}^{\infty} f_n t^n;$

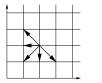
 $F(t;0,\infty)'' := [x^0] F(t;x,1/x).$

From the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

From the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

From the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:



trivial,

simple,

From the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

trivial,

simple,

intrinsic to the half plane,

From the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:

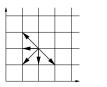
symmetrical.

trivial,

simple,

intrinsic to the half plane,

From the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:



trivial,

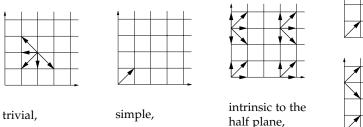
simple,

intrinsic to the half plane,

symmetrical.

One is left with 79 interesting distinct models.

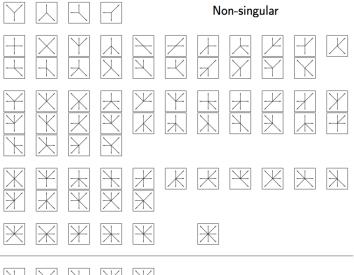
From the 2^8 step sets $\mathfrak{S} \subseteq \{-1, 0, 1\}^2 \setminus \{(0, 0)\}$, some are:



symmetrical.

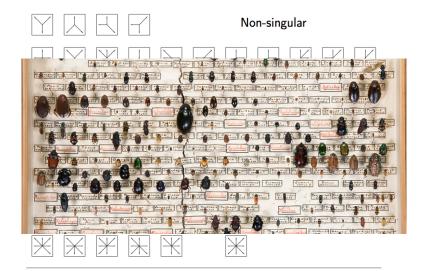
One is left with 79 interesting distinct models.

Is any further classification possible?



Singular

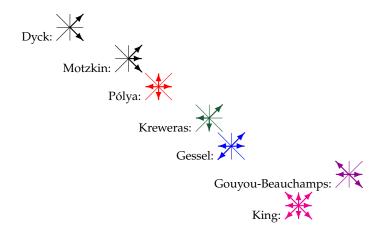
The 79 models



Alin Bostan

Singular

Algebraicity and transcendence of power series



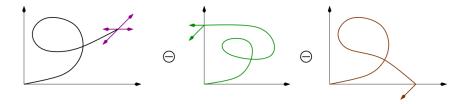
Algebraic reformulation: solving a functional equation

Generating function:
$$G(t; x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g(n; i, j) t^n x^i y^j \in \mathbb{Q}[x, y][[t]]$$

"Kernel equation":

$$G(t; x, y) = 1 + t \left(xy + x + \frac{1}{xy} + \frac{1}{x} \right) G(t; x, y)$$

- $t \left(\frac{1}{x} + \frac{1}{x} \frac{1}{y} \right) G(t; 0, y) - t \frac{1}{xy} \left(G(t; x, 0) - G(t; 0, 0) \right)$

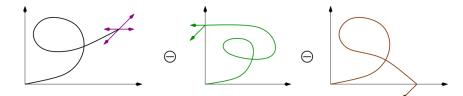


Algebraic reformulation: solving a functional equation

Generating function:
$$G(t; x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g(n; i, j) t^n x^i y^j \in \mathbb{Q}[x, y][[t]]$$

"Kernel equation":

$$G(t;x,y) = 1 + t\left(xy + x + \frac{1}{xy} + \frac{1}{x}\right)G(t;x,y) - t\left(\frac{1}{x} + \frac{1}{x}\frac{1}{y}\right)G(t;0,y) - t\frac{1}{xy}\left(G(t;x,0) - G(t;0,0)\right)$$



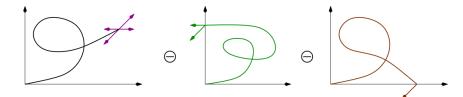
Task: Solve this functional equation!

Algebraic reformulation: solving a functional equation

Generating function:
$$G(t; x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{n} \sum_{j=0}^{n} g(n; i, j) t^n x^i y^j \in \mathbb{Q}[x, y][[t]]$$

"Kernel equation":

$$G(t;x,y) = 1 + t\left(xy + x + \frac{1}{xy} + \frac{1}{x}\right)G(t;x,y) - t\left(\frac{1}{x} + \frac{1}{x}\frac{1}{y}\right)G(t;0,y) - t\frac{1}{xy}\left(G(t;x,0) - G(t;0,0)\right)$$



Task: For the other models: solve 78 similar equations!

Theorem [Kreweras 1965; 100 pages long combinatorial proof!] $K(t; 0, 0) = {}_{3}F_{2} \begin{pmatrix} 1/3 & 2/3 & 1 \\ 3/2 & 2 \end{pmatrix} | 27 t^{3} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{4^{n} \binom{3n}{n}}{(n+1)(2n+1)} t^{3n}.$

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel's conj. 1] $G(t;0,0) = {}_{3}F_{2} \begin{pmatrix} 5/6 & 1/2 & 1 \\ 5/3 & 2 \end{pmatrix} | 16t^{2} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{(5/6)_{n}(1/2)_{n}}{(5/3)_{n}(2)_{n}} (4t)^{2n}.$

Question: What about the structure of K(t; x, y) and G(t; x, y)?

Theorem [Kreweras 1965; 100 pages long combinatorial proof!] $K(t;0,0) = {}_{3}F_{2} \begin{pmatrix} 1/3 & 2/3 & 1 \\ 3/2 & 2 \end{pmatrix} | 27 t^{3} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{4^{n} \binom{3n}{n}}{(n+1)(2n+1)} t^{3n}.$

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel's conj. 1] $G(t;0,0) = {}_{3}F_{2} \begin{pmatrix} 5/6 & 1/2 & 1 \\ 5/3 & 2 \end{pmatrix} | 16t^{2} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{(5/6)_{n}(1/2)_{n}}{(5/3)_{n}(2)_{n}} (4t)^{2n}.$

Question: What about the structure of K(t; x, y) and G(t; x, y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel's conj. 2] G(t; x, y) is algebraic.

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!] $K(t;0,0) = {}_{3}F_{2} \begin{pmatrix} 1/3 & 2/3 & 1 \\ 3/2 & 2 \end{pmatrix} | 27 t^{3} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{4^{n} \binom{3n}{n}}{(n+1)(2n+1)} t^{3n}.$

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel's conj. 1] $G(t;0,0) = {}_{3}F_{2} \begin{pmatrix} 5/6 & 1/2 & 1 \\ 5/3 & 2 \end{pmatrix} | 16t^{2} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{(5/6)_{n}(1/2)_{n}}{(5/3)_{n}(2)_{n}} (4t)^{2n}.$

Question: What about the structure of K(t; x, y) and G(t; x, y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel's conj. 2] G(t; x, y) is algebraic.

▷ Computer-driven discovery and proof.

 \triangleright Guess'n'Prove method, using Hermite-Padé approximants[†] \longrightarrow Yesterday

† Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has $> 10^{11}$ terms; ≈ 30 Gb (!)

Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages long combinatorial proof!] $K(t;0,0) = {}_{3}F_{2} \begin{pmatrix} 1/3 & 2/3 & 1 \\ 3/2 & 2 \end{pmatrix} | 27t^{3} = \sum_{n=0}^{\infty} \frac{4^{n} \binom{3n}{n}}{(n+1)(2n+1)} t^{3n}.$

Theorem [Kauers, Koutschan & Zeilberger 2009: former Gessel's conj. 1] $G(t;0,0) = {}_{3}F_{2} \begin{pmatrix} 5/6 & 1/2 & 1 \\ 5/3 & 2 \end{pmatrix} | 16t^{2} \end{pmatrix} = \sum_{n=0}^{\infty} \frac{(5/6)_{n}(1/2)_{n}}{(5/3)_{n}(2)_{n}} (4t)^{2n}.$

Question: What about the structure of K(t; x, y) and G(t; x, y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

Theorem [B. & Kauers 2010: former Gessel's conj. 2] G(t; x, y) is algebraic.

▷ Computer-driven discovery and proof.

ightarrow Guess'n'Prove method, using Hermite-Padé approximants[†] \longrightarrow Yesterday

▷ New (human) proofs [B., Kurkova & Raschel 2013], [Bousquet-Mélou 2015]

+ Minimal polynomial P(x, y, t, G(t; x, y)) = 0 has $> 10^{11}$ terms; ≈ 30 Gb (!)

Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010] Let $V = 1 + 4t^2 + 36t^4 + 396t^6 + \cdots$ be a root of $(V - 1)(1 + 3/V)^3 = (16t)^2$, let $U = 1 + 2t^2 + 16t^4 + 2xt^5 + 2(x^2 + 83)t^6 + \cdots$ be a root of $x(V - 1)(V + 1)U^3 - 2V(3x + 5xV - 8Vt)U^2$ $-xV(V^2 - 24V - 9)U + 2V^2(xV - 9x - 8Vt) = 0$, let $W = t^2 + (y + 8)t^4 + 2(y^2 + 8y + 41)t^6 + \cdots$ be a root of $y(1 - V)W^3 + y(V + 3)W^2 - (V + 3)W + V - 1 = 0$.

Then G(t; x, y) is equal to

$$\frac{\frac{64(U(V+1)-2V)V^{3/2}}{x(U^2-V(U^2-8U+9-V))^2}-\frac{y(W-1)^4(1-Wy)V^{-3/2}}{t(y+1)(1-W)(W^2y+1)^2}}{(1+y+x^2y+x^2y^2)t-xy}-\frac{1}{tx(y+1)}.$$

▷ Computer-driven discovery and proof; no human proof yet.

Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010] Let $V = 1 + 4t^2 + 36t^4 + 396t^6 + \cdots$ be a root of $(V - 1)(1 + 3/V)^3 = (16t)^2$, let $U = 1 + 2t^2 + 16t^4 + 2xt^5 + 2(x^2 + 83)t^6 + \cdots$ be a root of $x(V - 1)(V + 1)U^3 - 2V(3x + 5xV - 8Vt)U^2$ $-xV(V^2 - 24V - 9)U + 2V^2(xV - 9x - 8Vt) = 0$, let $W = t^2 + (y + 8)t^4 + 2(y^2 + 8y + 41)t^6 + \cdots$ be a root of $y(1 - V)W^3 + y(V + 3)W^2 - (V + 3)W + V - 1 = 0$.

Then G(t; x, y) is equal to

$$\frac{\frac{64(U(V+1)-2V)V^{3/2}}{x(U^2-V(U^2-8U+9-V))^2}-\frac{y(W-1)^4(1-Wy)V^{-3/2}}{t(y+1)(1-W)(W^2y+1)^2}}{(1+y+x^2y+x^2y^2)t-xy}-\frac{1}{tx(y+1)}.$$

▷ Computer-driven discovery and proof; no human proof yet. ▷ Proof uses guessed minimal polynomials for G(t; x, 0) and G(t; 0, y).

Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010] Let $V = 1 + 4t^2 + 36t^4 + 396t^6 + \cdots$ be a root of $(V - 1)(1 + 3/V)^3 = (16t)^2$, let $U = 1 + 2t^2 + 16t^4 + 2xt^5 + 2(x^2 + 83)t^6 + \cdots$ be a root of $x(V - 1)(V + 1)U^3 - 2V(3x + 5xV - 8Vt)U^2$ $-xV(V^2 - 24V - 9)U + 2V^2(xV - 9x - 8Vt) = 0$, let $W = t^2 + (y + 8)t^4 + 2(y^2 + 8y + 41)t^6 + \cdots$ be a root of $y(1 - V)W^3 + y(V + 3)W^2 - (V + 3)W + V - 1 = 0$.

Then G(t; x, y) is equal to

$$\frac{\frac{64(U(V+1)-2V)V^{3/2}}{x(U^2-V(U^2-8U+9-V))^2}-\frac{y(W-1)^4(1-Wy)V^{-3/2}}{t(y+1)(1-W)(W^2y+1)^2}}{(1+y+x^2y+x^2y^2)t-xy}-\frac{1}{tx(y+1)}$$

Main results (III): Conjectured D-Finite *F*(*t*;1,1) [B. & Kauers 2009]

	OEIS	\mathfrak{S}	Pol size	ODE size					ODE size
	A005566		—	3,4		A151275			5, 24
	A018224		—	3,5	14	A151314	\mathbb{X}	—	5, 24
	A151312		_	3, 8	15	A151255	\mathbf{x}	—	4, 16
	A151331		—	3,6	16	A151287	捡	—	5, 19
	A151266		—	5, 16		A001006			2, 3
	A151307		—	5, 20		A129400			2, 3
	A151291		—	5, 15	19	A005558		—	3, 5
	A151326		—	5, 18					
	A151302	~ · ~	—	5, 24	20	A151265	\checkmark	6, 8	4,9
10	A151329	翜	—	5, 24	21	A151278	\rightarrow	6,8	4, 12
11	A151261	Â	—	4, 15	22	A151323	¥≯	4, 4	2, 3
12	A151297	鏉	—	5, 18	23	A060900	Æ	8,9	3, 5

Equation sizes = {order, degree}@(algeq, diffeq)

Computerized discovery by enumeration + Hermite–Padé

- ▷ 1–22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]
- ▷ 23: Confirmed by a human proof in [B., Kurkova & Raschel 2015]

Main results (III): Conjectured D-Finite *F*(*t*;1,1) [B. & Kauers 2009]

	OEIS	S	alg	asympt		OEIS	S	alg	asympt	
1	A005566	\Leftrightarrow	Ν	$\frac{4}{\pi} \frac{4^n}{n}$	13	A151275	\mathbf{X}	Ν	$\frac{12\sqrt{30}}{\pi} \frac{(2\sqrt{6})^n}{n^2}$	
	A018224			$\frac{2}{\pi} \frac{4^n}{n}$	14	A151314	\mathbb{X}	Ν	$\frac{\sqrt{6\lambda\mu}C^{5/2}}{5\pi}\frac{n^{2}}{(2C)^{n}}$	
3	A151312	\mathbb{X}	Ν	$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	15	A151255	ک	Ν	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$	
4	A151331	畿	Ν	$\frac{8}{3\pi}\frac{8^n}{n}$	16	A151287	捡	Ν	$\frac{\frac{24\sqrt{2}}{\pi}}{\frac{2\sqrt{2}A^{7/2}}{\pi}}\frac{\frac{(2\sqrt{2})^n}{n^2}}{\frac{(2A)^n}{n^2}}$	
5	A151266	Y	Ν	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{1/2}}$	17	A001006	÷,	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$	
	A151307			$\frac{1}{2}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	18	A129400	敎	Y	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{3/2}}$	
7	A151291	Ŷ	Ν	$\frac{4}{3\sqrt{\pi}}\frac{4^n}{n^{1/2}}$	19	A005558		Ν	$\frac{8}{\pi} \frac{4^n}{n^2}$	
8	A151326	敎	Ν	$\frac{2}{\sqrt{3\pi}} \frac{6^n}{n^{1/2}}$						
9	A151302	\mathbb{X}	Ν	$\frac{1}{3}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	20	A151265	\checkmark	Y	$\frac{2\sqrt{2}}{\Gamma(1/4)} \frac{3^n}{n^{3/4}}$	
10	A151329	翜	Ν	$\frac{1}{3}\sqrt{\frac{7}{3\pi}}\frac{7^n}{n^{1/2}}$	21	A151278	♪	Y	$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(1/4)}\frac{3^n}{n^{3/4}}$	
	A151261			$\frac{12\sqrt{3}}{\pi}\frac{(2\sqrt{3})^n}{n^2}$	22	A151323	₽	Y	$\frac{\sqrt{2}3^{3/4}}{\Gamma(1/4)} \frac{6^n}{n^{3/4}}$	
12	A151297	鏉	Ν	$\frac{\sqrt{3}B^{7/2}}{2\pi}\frac{(2B)^n}{n^2}$	23	A060900	Å	Y	$\frac{4\sqrt{3}}{3\Gamma(1/3)}\frac{4^n}{n^{2/3}}$	
	$A = 1 + \sqrt{2}, \ B = 1 + \sqrt{3}, \ C = 1 + \sqrt{6}, \ \lambda = 7 + 3\sqrt{6}, \ \mu = \sqrt{\frac{4\sqrt{6}-1}{19}}$									

Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.
Confirmed by human proofs in [Melczer & Wilson, 2015]

Alin Bostan

The group of a model: the simple walk case

The characteristic polynomial $\chi_{\mathfrak{S}} := x + \frac{1}{x} + y + \frac{1}{y}$

The group of a model: the simple walk case

The characteristic polynomial $\chi_{\mathfrak{S}} := x + \frac{1}{x} + y + \frac{1}{y}$ is left invariant under

$$\psi(x,y) = \left(x, \frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{1}{x}, y\right),$$

The group of a model: the simple walk case

The characteristic polynomial $\chi_{\mathfrak{S}} := x + \frac{1}{x} + y + \frac{1}{y}$ is left invariant under

$$\psi(x,y) = \left(x, \frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{1}{x}, y\right),$$

and thus under any element of the group

$$\langle \psi, \phi \rangle = \left\{ (x, y), \left(x, \frac{1}{y} \right), \left(\frac{1}{x}, \frac{1}{y} \right), \left(\frac{1}{x}, y \right) \right\}.$$

The group of a model: the general case

The polynomial $\chi_{\mathfrak{S}} := \sum_{(i,j)\in\mathfrak{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$

The group of a model: the general case

The polynomial
$$\chi_{\mathfrak{S}} := \sum_{(i,j)\in\mathfrak{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$$
 is left

invariant under

$$\psi(x,y) = \left(x, \frac{A_{-1}(x)}{A_{+1}(x)}\frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{B_{-1}(y)}{B_{+1}(y)}\frac{1}{x}, y\right),$$

The group of a model: the general case

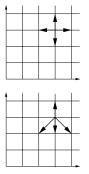
The polynomial
$$\chi_{\mathfrak{S}} := \sum_{(i,j)\in\mathfrak{S}} x^i y^j = \sum_{i=-1}^1 B_i(y) x^i = \sum_{j=-1}^1 A_j(x) y^j$$
 is left

invariant under

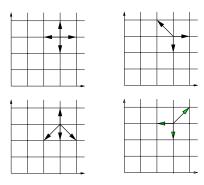
$$\psi(x,y) = \left(x, \frac{A_{-1}(x)}{A_{+1}(x)}\frac{1}{y}\right), \quad \phi(x,y) = \left(\frac{B_{-1}(y)}{B_{+1}(y)}\frac{1}{x}, y\right),$$

and thus under any element of the group

$$\mathcal{G}_{\mathfrak{S}} := \langle \psi, \phi \rangle.$$

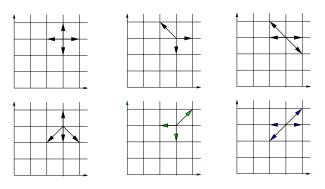


Order 4,



Order 4,

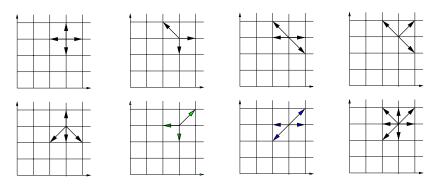
order 6,



Order 4,

order 6,

order 8,



Order 4,

order 6,

order 8,

order ∞ .

An important concept: the orbit sum (OS)

The orbit sum of a model \mathfrak{S} is the following polynomial in $\mathbb{Q}[x, x^{-1}, y, y^{-1}]$:

$$\operatorname{OrbitSum}(\mathfrak{S}) := \sum_{\theta \in \mathcal{G}_{\mathfrak{S}}} (-1)^{\theta} \theta(xy)$$

▷ E.g., for the simple walk:

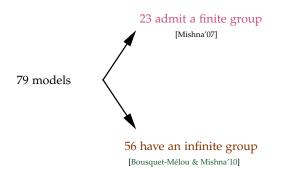
$$OS = x \cdot y - \frac{1}{x} \cdot y + \frac{1}{x} \cdot \frac{1}{y} - x \cdot \frac{1}{y}$$

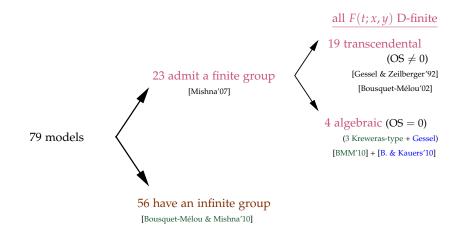
▷ For 4 models, the orbit sum is zero:

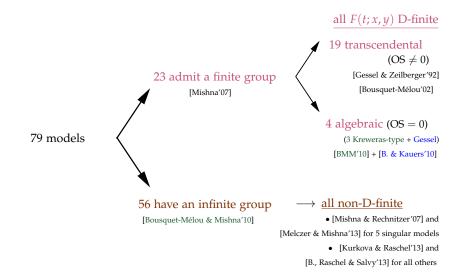
E.g. for the Kreweras model:

OS
$$x \cdot y - \frac{1}{xy} \cdot y + \frac{1}{xy} \cdot x - y \cdot x + y \cdot \frac{1}{xy} - x \cdot \frac{1}{xy} = 0$$

79 models







The 23 models with a finite group

(i) 16 with a vertical symmetry, and group isomorphic to D_2

(ii) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic to D_3

(iii) 2 with group isomorphic to D_4

(i): vertical symmetry; (ii)+(iii): zero drift $\sum_{s \in \mathfrak{S}} s$ In red, models with OS = 0 and algebraic GF

Main results (IV): explicit expressions for the 19 D-finite transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let $\mathfrak S$ be one of the 19 models with finite group $\mathcal G_{\mathfrak S},$ and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of $_2F_1$ expressions.
- Among the 19 × 4 specializations of $F_{\mathfrak{S}}(t; x, y)$ at $(x, y) \in \{0, 1\}^2$, only 4 are algebraic: for $\mathfrak{S} = 4$ at (1, 1), and $\mathfrak{S} = 4$ at (1, 0), (0, 1), (1, 1)

Main results (IV): explicit expressions for the 19 D-finite transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let $\mathfrak S$ be one of the 19 models with finite group $\mathcal G_{\mathfrak S},$ and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of $_2F_1$ expressions.
- Among the 19 × 4 specializations of $F_{\mathfrak{S}}(t; x, y)$ at $(x, y) \in \{0, 1\}^2$, only 4 are algebraic: for $\mathfrak{S} = 4$ at (1, 1), and $\mathfrak{S} = 4$ at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A025595)

$$F_{\text{resp}}(t;1,1) = \frac{1}{t} \int_0^t \frac{1}{(1+4x)^3} \cdot {}_2F_1\left(\frac{3}{2}\frac{3}{2}\right) \left|\frac{16x(1+x)}{(1+4x)^2}\right) dx$$

 $= 1 + 3t + 18t^{2} + 105t^{3} + 684t^{4} + 4550t^{5} + 31340t^{6} + 219555t^{7} + \cdots$

Main results (IV): explicit expressions for the 19 D-finite transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

Let $\mathfrak S$ be one of the 19 models with finite group $\mathcal G_{\mathfrak S'}$ and non-zero orbit sum. Then

- $F_{\mathfrak{S}}$ is expressible using iterated integrals of $_2F_1$ expressions.
- Among the 19 × 4 specializations of $F_{\mathfrak{S}}(t; x, y)$ at $(x, y) \in \{0, 1\}^2$, only 4 are algebraic: for $\mathfrak{S} = 4$ at (1, 1), and $\mathfrak{S} = 4$ at (1, 0), (0, 1), (1, 1)

Example (King walks in the quarter plane, A025595)

$$F_{\text{resp}}(t;1,1) = \frac{1}{t} \int_0^t \frac{1}{(1+4x)^3} \cdot {}_2F_1\left(\frac{3}{2}\frac{3}{2} \mid \frac{16x(1+x)}{(1+4x)^2}\right) dx$$

 $= 1 + 3t + 18t^{2} + 105t^{3} + 684t^{4} + 4550t^{5} + 31340t^{6} + 219555t^{7} + \cdots$

Computer-driven discovery and proof; no human proof yet.
Proof uses creative telescoping, ODE factorization, ODE solving.

Hypergeometric Series Occurring in Explicit Expressions for F(t; 1, 1)

hyp1	hyp ₂	w		hyp1	hyp ₂	w
$\begin{bmatrix} 1 & _2F_1 \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{bmatrix} w \end{pmatrix}$	$)_{2}F_{1}\left(\begin{array}{c}\frac{1}{2} & \frac{3}{2} \\ 2 \end{array}\right) w$	16 <i>t</i> ²	10	$_{2}F_{1}\left(\begin{array}{c} \frac{7}{4} & 9\\ 2 \end{array} \middle w \right)$	$_{2}F_{1}\left(\begin{array}{c} \frac{9}{4} \frac{11}{4} \\ 3 \end{array} \middle w\right)$	$\tfrac{64(t^2+t+1)t^2}{(12t^2+1)^2}$
$\begin{vmatrix} 2 & _2F_1 \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & \end{vmatrix} w \end{pmatrix}$)	$16t^{2}$	11	$_2F_1\left(\begin{array}{c} \frac{1}{2} & \frac{3}{2} \\ 2 \end{array}\right) w$	$_{2}F_{1}\left(\begin{array}{c}\frac{1}{2} & \frac{5}{2}\\ 3\end{array}\right) w$	$\tfrac{16t^2}{4t^2+1}$
$\begin{vmatrix} 3 & {}_{2}F_{1} \begin{pmatrix} \frac{3}{2} & \frac{3}{2} \\ 2 \end{pmatrix} \end{vmatrix} w$)	$\tfrac{16t}{(2t+1)(6t+1)}$	12	$_2F_1\left(\begin{array}{c} \frac{5}{4} & \frac{7}{4} \\ 1 \end{array}\right)$	$_{2}F_{1}\left(\begin{array}{c}5&7\\4&2\end{array}\right)$	$\frac{64t^3(2t+1)}{(8t^2-1)^2}$
$4 _{2}F_{1}\left(\begin{array}{c}3 & 3\\2 & 2\end{array}\right) w$)	$\tfrac{16t(1+t)}{(1+4t)^2}$	13	$_{2}F_{1}\left(\begin{array}{c} \frac{7}{4} & \frac{9}{4} \\ 2 \end{array} \right) w$	- (3)	$\frac{64t^2(t^2+1)}{(16t^2+1)^2}$
$5 _{2}F_{1}\left(\begin{array}{c} \frac{3}{4} & \frac{5}{4} \\ 1 & w \end{array}\right)$	$)_{2}F_{1}\left(\begin{array}{c} \frac{5}{4} & \frac{7}{4} \\ 2 \end{array} \middle w\right)$	$64t^{4}$	14	$_2F_1\left(\begin{array}{c} \frac{7}{4} & \frac{9}{4}\\ 2 \end{array}\right)$	$_{2}F_{1}\left(\begin{array}{c} \frac{9}{4} \frac{11}{4} \\ 3 \end{array}\right) w$	$\frac{64(t^2\!+\!t\!+\!1)t^2}{(12t^2\!+\!1)^2}$
$\begin{bmatrix} 6 & {}_2F_1 \begin{pmatrix} \frac{7}{4} & \frac{9}{4} \\ 2 \end{bmatrix} w \end{pmatrix}$	$)_{2}F_{1}\left(\begin{array}{c} \frac{7}{4} & \frac{9}{4}\\ 3 \end{array}\right) w$	$\tfrac{64t^3(1+t)}{(1-4t^2)^2}$	15	$_2F_1\left(\begin{array}{c} \frac{1}{4} & \frac{3}{4} \\ 1 \end{array}\right)$	$_2F_1\left(\begin{array}{c}3&5\\4&2\end{array}\right)$	$64t^{4}$
$\begin{bmatrix} 7 & {}_2F_1 \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 \end{bmatrix} w \end{bmatrix}$	$2F_1\left(\begin{array}{c} \frac{1}{2} & \frac{3}{2} \\ 1 \end{array}\right) w$	$\tfrac{16t^2}{4t^2+1}$	16	$_2F_1\left(\begin{array}{c} 7 & 9\\ 4 & 4 \end{array}\right)$	$_{2}F_{1}\left(\begin{array}{c} \frac{9}{4} \frac{11}{4} \\ 3 \end{array}\right) w$	$\tfrac{64t^3(1+t)}{(1-4t^2)^2}$
$\begin{vmatrix} 8 & {}_2F_1 \begin{pmatrix} \frac{5}{4} & \frac{7}{4} \\ 2 & w \end{pmatrix} $	$) {}_{2}F_{1}\left(\left \begin{array}{c} \frac{7}{4} & \frac{9}{4} \\ 2 \end{array} \right w \right)$	$\frac{64t^3(2t+1)}{(8t^2-1)^2}$				
9 $_2F_1\left(\begin{array}{c} 7 & 9\\ 4 & 4\\ 2 \end{array}\right)$	$) _{2}F_{1}\left(\begin{array}{c} 7 & 9 \\ 4 & 3 \\ 3 \end{array}\right) w$	$\frac{64t^2(t^2+1)}{(16t^2+1)^2}$	19	$_2F_1\left(\begin{array}{cc} -\frac{1}{2} & \frac{1}{2} \\ 1 \end{array} \middle w$	$\Big) _{2}F_{1}\left(\begin{array}{c} \frac{1}{2} & \frac{1}{2} \\ 2 \end{array} \middle w \right)$	$16t^{2}$

▷ All related to complete elliptic integrals!

Theorem [B., Rachel & Salvy 2013]

Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t;0,0)$, and in particular $F_{\mathfrak{S}}(t;x,y)$, are non-D-finite.

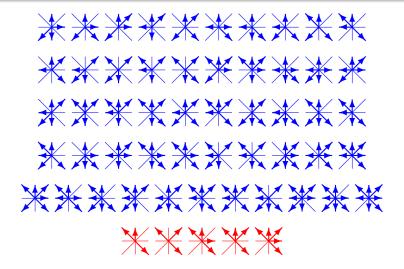
Theorem [B., Rachel & Salvy 2013]

Let \mathfrak{S} be one of the 51 non-singular models with infinite group $\mathcal{G}_{\mathfrak{S}}$. Then $F_{\mathfrak{S}}(t;0,0)$, and in particular $F_{\mathfrak{S}}(t;x,y)$, are non-D-finite.

Algorithmic proof. Uses Gröbner basis computations, polynomial factorization, cyclotomy testing.

▷ Based on two ingredients: asymptotics + irrationality.

▷ [Kurkova & Raschel 2013] Human proof that $F_{\mathfrak{S}}(t; x, y)$ is non-D-finite. ▷ No human proof yet for $F_{\mathfrak{S}}(t; 0, 0)$ non-D-finite. The 56 models with infinite group



In blue, non-singular models, solved by [B., Raschel & Salvy 2013] In red, singular models, solved by [Melczer & Mishna 2013] [B., Raschel & Salvy 2013]: $F_{\mathfrak{S}}(t;0,0)$ is not D-finite for the models

For the 1st and the 3rd, the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$

1, 0, 0, 2, 4, 8, 28, 108, 372, ...

is $\sim K \cdot 5^n \cdot n^{-\alpha}$, with $\alpha = 1 + \pi / \arccos(1/4) = 3.383396...$

The irrationality of α prevents $F_{\mathfrak{S}}(t;0,0)$ from being D-finite.

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:

- (1) The full generating series $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating series $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\}$)
- (5) the step set 𝔅 has either an axial symmetry, or zero drift and cardinal different from 5.

Summary: Classification of 2D non-singular walks

The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:

- (1) The full generating series $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating series $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\}$)
- (5) the step set 𝔅 has either an axial symmetry, or zero drift and cardinal different from 5.

Moreover, under (1)–(5), $F_{\mathfrak{S}}(t; x, y)$ is algebraic if and only if the model \mathfrak{S} has positive covariance $\sum_{(i,j)\in\mathfrak{S}} ij - \sum_{(i,j)\in\mathfrak{S}} i \cdot \sum_{(i,j)\in\mathfrak{S}} j > 0$, and iff it has OS = 0.

Summary: Classification of 2D non-singular walks

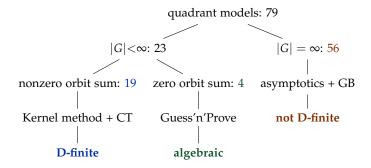
The Main Theorem Let \mathfrak{S} be one of the 74 non-singular models. The following assertions are equivalent:

- (1) The full generating series $F_{\mathfrak{S}}(t; x, y)$ is D-finite
- (2) the excursions generating series $F_{\mathfrak{S}}(t;0,0)$ is D-finite
- (3) the excursions sequence $[t^n] F_{\mathfrak{S}}(t;0,0)$ is $\sim K \cdot \rho^n \cdot n^{\alpha}$, with $\alpha \in \mathbb{Q}$
- (4) the group $\mathcal{G}_{\mathfrak{S}}$ is finite (and $|\mathcal{G}_{\mathfrak{S}}| = 2 \cdot \min\{\ell \in \mathbb{N}^* \mid \frac{\ell}{\alpha+1} \in \mathbb{Z}\})$
- (5) the step set 𝔅 has either an axial symmetry, or zero drift and cardinal different from 5.

Moreover, under (1)–(5), $F_{\mathfrak{S}}(t; x, y)$ is algebraic if and only if the model \mathfrak{S} has positive covariance $\sum_{(i,j)\in\mathfrak{S}} ij - \sum_{(i,j)\in\mathfrak{S}} i \cdot \sum_{(i,j)\in\mathfrak{S}} j > 0$, and iff it has OS = 0.

In this case, $F_{\mathfrak{S}}(t; x, y)$ is expressible using nested radicals. If not, $F_{\mathfrak{S}}(t; x, y)$ is expressible using iterated integrals of $_2F_1$ expressions.

Summary: Walks with unit steps in \mathbb{N}^2



Extensions: Walks with unit steps in \mathbb{N}^3

 $2^{3^3-1} \approx 67$ millions models, of which ≈ 11 million inherently 3D 3D octant models with ≤ 6 steps: 20804 $|G| < \infty$: 170 $|G| = \infty$?: 20634 orbit sum \neq 0: 108 orbit sum = 0: 62 **not D-finite?** 2D-reducible: 43 kernel method not 2D-reducible: 19 **D**-finite **D**-finite not D-finite?

[B., Bousquet-Mélou, Kauers, Melczer 2015]

▷ Open question: are there non-D-finite models with a finite group?

Extensions: Walks with unit steps in \mathbb{N}^3

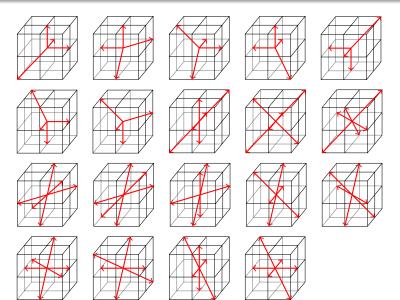
 $2^{3^3-1} \approx 67$ millions models, of which ≈ 11 million inherently 3D 3D octant models with ≤ 6 steps: 20804 $|G| < \infty$: 170 $|G| = \infty$?: 20634 orbit sum $\neq 0$: 108 orbit sum = 0: 62 not D-finite? kernel method 2D-reducible: 43 D-finite D-finite D-finite D-finite

[B., Bousquet-Mélou, Kauers, Melczer 2015]

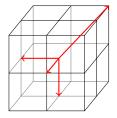
▷ Open question: are there non-D-finite models with a finite group?

▷ [Du, Hu, Wang, 2015]: proofs that groups are infinite in the 20634 cases ▷ [Bacher, Kauers, Yatchak, 2016]: extension to all 3D models; 170 models found with $|G| < \infty$ and orbit sum 0 (instead of 19)

The 19 mysterious 3D-models



Open question: 3D Kreweras



Two different computations suggest: $k_n \approx C \cdot 256^n / n^{3.3257570041744...},$

so excursions are very probably transcendental (and even non-D-finite)

Extensions: Walks in \mathbb{N}^2 with longer steps

• Define (and use) a group $\mathcal G$ for models with larger steps?

• Example: When $\mathfrak{S} = \{(0,1), (1,-1), (-2,-1)\}$, there is an underlying group that is finite and

$$xyF(t;x,y) = [x^{>0}y^{>0}] \frac{(x-2x^{-2})(y-(x-x^{-2})y^{-1})}{1-t(xy^{-1}+y+x^{-2}y^{-1})}$$

[B., Bousquet-Mélou & Melczer, in preparation]

Current status:

- 680 models with one large step, 643 proved non D-finite, 32 of 37 have differential equations guessed.
- 5910 models with two large steps, 5754 proved non D-finite, 69 of 156 have differential equations guessed.

Conclusion

Computer algebra may solve difficult combinatorial problems

Classification of F(t; x, y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

- Guess'n'Prove
- Creative Telescoping

 \bigcirc

:

 $\overline{\mathbf{\cdot}}$

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t; x, y) \approx 30$ Gb.

Conclusion

 $\overline{\mathbf{:}}$

Computer algebra may solve difficult combinatorial problems

Classification of F(t; x, y) fully completed for 2D small step walks

Robust algorithmic methods, based on efficient algorithms:

- Guess'n'Prove
- Creative Telescoping

Brute-force and/or use of naive algorithms = hopeless. E.g. size of algebraic equations for $G(t; x, y) \approx 30$ Gb.

Lack of "purely human" proofs for some results.

Still missing a unified proof of: finite group \leftrightarrow D-finite.

Open: is F(t; 1, 1) non-D-finite for all 56 models with infinite group?

Many open questions in dimension > 2.

Bibliography

- Automatic classification of restricted lattice walks, with M. Kauers. Proc. FPSAC, 2009.
- The complete generating function for Gessel walks is algebraic, with M. Kauers. Proc. Amer. Math. Soc., 2010.
- Explicit formula for the generating series of diagonal 3D Rook paths, with F. Chyzak, M. van Hoeij and L. Pech. Séminaire Lotharingien de Combinatoire, 2011.
- Non-D-finite excursions in the quarter plane, with K. Raschel and B. Salvy. Journal of Combinatorial Theory A, 2013.
- On 3-dimensional lattice walks confined to the positive octant, with M. Bousquet-Mélou, M. Kauers and S. Melczer. Annals of Comb., 2015.
- A human proof of Gessel's lattice path conjecture, with I. Kurkova, K. Raschel, Transactions of the AMS, 2015.
- Explicit Differentiably Finite Generating Functions of Walks with Small Steps in the Quarter Plane, with F. Chyzak, M. van Hoeij, M. Kauers and L. Pech, 2016.

Thanks for your attention!